波尔兹曼常数的数值:1.3806488(13)×10^-23J/K。
符号:k或kB。
相关约化单位:300kT=25.852 meV。
玻尔兹曼常数(Boltzmann constant)(k 或 kB)是有关于温度及能量的一个物理常数。玻尔兹曼是一个奥地利物理学家,在统计力学的理论有重大贡献,玻尔兹曼常数具有相当重要的地位。
玻尔兹曼常量系热力学的一个基本常量,记为“K”,玻尔兹曼常量可以推导得到,理想气体常数R等于玻尔兹曼常数乘以阿伏伽德罗常数。
推导过程:
从气体动理论的观点来看,理想气体是最简单的气体,其微观模型有三条假设:
1.分子本身的大小比分子间的平均距离小得多,分子可视为质点,它们遵从牛顿运动定律。
2.分子与分子间或分子与器壁间的碰撞是完全弹性的。
3.除碰撞瞬间外,分子间的相互作用力可忽略不计,重力的影响也可忽略不计。因此在相邻两次碰撞之间,分子做匀速直线运动。单个分子在一次碰撞中对器壁上单位面积的冲量:
I=2m·vx
vx为x方向上的速度分量.这一次碰撞的时间为2a╱vx,故单位时间内的碰撞次数为vx╱2a。
所以单位时间内该分子对该器壁的冲量为:
(2m·vx)(vx/2a)=m·vx²/a.
而vx²=vy²=vz²=(1/3)v²,故单位时间内容器内所有分子对该器壁的压强
p=N×(1/3)m·v²/(a×b×c)= (1/3)N·m·v²/V,
由于分子平动动能Ek=(1/2)m·v²故,
p=(1/3)N·m·v²/V=(2N/3V)Ek。V为体积。该式即为理想气体的压强公式。
而理想气体状态方程P=N/V×(R/N')×T,其中N为分子数,N'为阿伏加德罗常数,定义R/N'为玻尔兹曼常数k,有:P=NkT╱V,即:PV=nRT=nN'kT。