您的位置首页生活百科

如图,$\triangle ABC$是边长为$6$的等边三角形,$BD=CD$,$\angle BDC=120^{\circ}$,以点$D$为顶点作一个$60^{\circ}$角,使其两边分别交$AB$于点$M$,交$AC$于点$N$,连结$MN$,则$\triangle AMN$的周长是______.

如图,$\triangle ABC$是边长为$6$的等边三角形,$BD=CD$,$\angle BDC=120^{\circ}$,以点$D$为顶点作一个$60^{\circ}$角,使其两边分别交$AB$于点$M$,交$AC$于点$N$,连结$MN$,则$\triangle AMN$的周长是______.

$\because \triangle BDC$是等腰三角形,且$\angle BDC=120^{\circ}$,

$\therefore \angle BCD=\angle DBC=30^{\circ}$,

$\because \triangle ABC$是边长为$4$的等边三角形,

$\therefore \angle ABC=\angle BAC=\angle BCA=60^{\circ}$,

$\therefore \angle DBA=\angle DCA=90^{\circ}$,

延长$AB$至$F$,使$BF=CN$,连接$DF$,

在$\triangle BDF$和$\triangle CND$中,

$\left\{\begin{array}{l}{BF=CN}\\{∠FBD=∠DCN}\\{DB=DC}\end{array}\right.$,

$\therefore \triangle BDF$≌$\triangle CND\left(SAS\right)$,

$\therefore \angle BDF=\angle CDN$,$DF=DN$,

$\because \angle MDN=60^{\circ}$,

$\therefore \angle BDM+\angle CDN=60^{\circ}$,

$\therefore \angle BDM+\angle BDF=60^{\circ}$,

在$\triangle DMN$和$\triangle DMF$中,

$\left\{\begin{array}{l}{MD=MD}\\{∠FDM=∠MDN}\\{DF=DN}\end{array}\right.$,

$\therefore \triangle DMN$≌$\triangle DMF\left(SAS\right)$,

$\therefore MN=MF$,

$\therefore \triangle AMN$的周长是:$AM+AN+MN=AM+MB+BF+AN=AB+AC=6+6=12$.

故答案为:$12$.

抖音看短剧