$\because \triangle BDC$是等腰三角形,且$\angle BDC=120^{\circ}$,
$\therefore \angle BCD=\angle DBC=30^{\circ}$,
$\because \triangle ABC$是边长为$4$的等边三角形,
$\therefore \angle ABC=\angle BAC=\angle BCA=60^{\circ}$,
$\therefore \angle DBA=\angle DCA=90^{\circ}$,
延长$AB$至$F$,使$BF=CN$,连接$DF$,
在$\triangle BDF$和$\triangle CND$中,
$\left\{\begin{array}{l}{BF=CN}\\{∠FBD=∠DCN}\\{DB=DC}\end{array}\right.$,
$\therefore \triangle BDF$≌$\triangle CND\left(SAS\right)$,
$\therefore \angle BDF=\angle CDN$,$DF=DN$,
$\because \angle MDN=60^{\circ}$,
$\therefore \angle BDM+\angle CDN=60^{\circ}$,
$\therefore \angle BDM+\angle BDF=60^{\circ}$,
在$\triangle DMN$和$\triangle DMF$中,
$\left\{\begin{array}{l}{MD=MD}\\{∠FDM=∠MDN}\\{DF=DN}\end{array}\right.$,
$\therefore \triangle DMN$≌$\triangle DMF\left(SAS\right)$,
$\therefore MN=MF$,
$\therefore \triangle AMN$的周长是:$AM+AN+MN=AM+MB+BF+AN=AB+AC=6+6=12$.
故答案为:$12$.