[答案]15
[考点]平面展开-最短路径问题
[解析][解答]解:沿过A的圆柱的高剪开,得出矩形EFGH, 过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离, ∵AE=A′E,A′P=AP, ∴AP+PC=A′P+PC=A′C, ∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm, 在Rt△A′QC中,由勾股定理得:A′C==15cm, 故答案为:15. [分析]过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.