最佳回答: V=1/3ah
棱锥体积公式
V=1/3ah
在几何学上,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成,多边形称为棱锥的底面。
随着底面形状不同,棱锥的称呼也不相同,依底面多边形而定,例如底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥等等。
历史
在公元前1650年左右的莱因德数学纸草书中,棱锥已经作为数学对象被几何学家研究。纸草书的56至59题是有关正方锥的底边、高以及底面和侧面形成的二面角之间关系的计算,如已知高和底边长度,求二面角等
。传说由欧几里德在公元前三世纪写成的《几何原本》中,第十二章第七个命题证明了:三角柱的体积等于同底同高的三角锥的三倍,但《几何原本》中没有给出直接的棱锥体积公式。
公元一世纪左右成书的《九章算术》第五章中的第十二题,计算了正方锥、直方锥(阳马)、直三角锥(鳖臑)的体积,并给出了通用公式。
扩展
四棱锥体积公式
V=1/3Sh(S为底面积,h为高)
推导过程如下
在四棱锥上做一个与四棱锥B1-ABCD同底等高的四棱柱A1B1C1D1-ABCD出来,沿底面的对角线BD与棱锥的顶角B1所在的面把四棱锥切开,把四棱锥的问题转化成三棱锥的问题。
这时候,两个三棱柱与两个三棱锥都分别是等底等高。他们的体积是分别相等的。若能证明三棱锥体积是1/3sh,即可证明四棱锥的体积计算公式1/3sh。
连接A D1之后,发现三棱柱是由三个三棱锥组成,只要证明这三个三棱锥B1-ABD,A-A1B1D1,A-D1B1D体积相等就可以了。B1-ABD与A-A1B1D1等底等高,所以体积相等。B1-ABD换个角度看其实就是A-B1BD,A-B1BD与A-D1B1D等底等高,所以体积相等。所以B1-ABD与A-D1B1D体积相等。也就是说组成三棱柱的这三个三棱锥体积相等,所以三棱锥体积是1/3sh所以四棱锥的体积计算公式1/3sh。四棱锥的底面面积S加顶点A'面积0除以2的平均面积1/2S的一个四棱柱乘以高h,就是四棱锥体积:V=1/3(S+0)h=1/3Sh。