复数的模是设复数z=a+bi(a,b∈R),则复数z的模|z|= ,它的几何意义是复平面上一点(a,b)到原点的距离。
运算法则:| z1·z2| = |z1|·|z2|,┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|,| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线。
运算法则
1、加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。