您的位置首页百科知识

洛必达法则基本公式

洛必达法则基本公式

零比零型:

满足下列条件:⑵ 在点的某去心邻域内两者都可导,且;

⑶( 可为实数,也可为 ±∞ )。

在运用洛必达法则之前,首先要完成两项任务:

一是分子分母的极限是否都等于零(或者无穷大);

二是分子分母在限定的区域内是否分别可导。如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。

扩展资料:

注意事项:

求极限是高等数学中最重要的内容之一,也是高等数学的基础部分,因此熟练掌握求极限的方法对学好高等数学具有重要的意义。洛比达法则用于求分子分母同趋于零的分式极限。

⑴ 在着手求极限以前,首先要检查是否满足或型构型,否则滥用洛必达法则会出错(其实形式分子并不需要为无穷大,只需分母为无穷大即可)。当不存在时(不包括情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰勒公式求解。

⑵ 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。

参考资料来源:

抖音看短剧