1、解:Sn=n^2+2n-1
S(n-1)=(n-1)^2+2(n-1)-1=n^2-2n+1+2n-2-1=n^2-2
an=Sn-S(n-1)=n^2+2n-1-n^2+2=2n+1
a(n-1)=2(n-1)+1=2n-1
an-a(n-1)=2n+1-2n+1=2
所以{an}是等差数列
2、解:Sn=3n^2+2n
S(n-1)=3(n-1)^2+2(n-1)=3n^2-6n+3+2n-2=3n^2-4n+1
an=Sn-S(n-1)=3n^2+2n-3n^2+4n-1=6n-1
a(n-1)=6(n-1)-1=6n-7
an-a(n-1)=6n-1-6n+7=6
所以{an}是等差数列
3、(1)证明:Sn=n^2+2n
S(n-1)=(n-1)^2+2(n-1)=n^2-2n+1+2n-2=n^2-1
an=Sn-S(n-1)=n^2+2n-n^2+1=2n+1
a(n-1)=2(n-1)+1=2n-2+1=2n-1
an-a(n-1)=2n+1-2n+1=2
所以{an}是等差数列
(2)由100