基本性质
⑴数列为等差数列的重要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n (n∈ N+)时, S偶-S奇 = nd, S奇÷S偶=an÷a(n+1) ;当项数为(2n-1)(n∈ N+)时,S奇—S偶=a中 ,S奇÷S偶 =n÷(n-1) .
⑶若数列为等差数列,则S n,S2n -Sn ,S3n -S 2n,…仍然成等差数列,公差为k^2d .
(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.
⑸在等差数列中,S = a,S = b (n>m),则S = (a-b).
⑹等差数列中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.
⑺记等差数列的前n项和为S .①若a >0,公差d<0,则当a ≥0且an+1≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且an+1≥0时,S 最小.
[8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)
6特殊性质
在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍,
即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中
例:
数列:1,3,5,7,9,11中
a(1)+a(6)=12 ; a(2)+a(5)=12 ; a(3)+a(4)=12 ; 即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。
数列:1,3,5,7,9中
a(1)+a(5)=10 ; a(2)+a(4)=10 ; a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5 ; 即,若项数为奇数,和等于中间项的2倍,另见,等差中项.
基本性质
⑴数列为等差数列的重要条件是:数列的前n项和S
可以写成S
=
an^2
+
bn的形式(其中a、b为常数).
⑵在等差数列中,当项数为2n
(n∈
N+)时,
S偶-S奇
=
nd,
S奇÷S偶=an÷a(n+1)
;当项数为(2n-1)(n∈
N+)时,S奇—S偶=a中
,S奇÷S偶
=n÷(n-1)
.
⑶若数列为等差数列,则S
n,S2n
-Sn
,S3n
-S
2n,…仍然成等差数列,公差为k^2d
.
(4)若数列{an}与{bn}均为等差数列,且前n项和分别是Sn和Tn,则am/bm=S2m-1/T2m-1.
⑸在等差数列中,S
=
a,S
=
b
(n>m),则S
=
(a-b).
⑹等差数列中,
是n的一次函数,且点(n,
)均在直线y
=
x
+
(a
-
)上.
⑺记等差数列的前n项和为S
.①若a
>0,公差d<0,则当a
≥0且an+1≤0时,S
最大;②若a
<0
,公差d>0,则当a
≤0且an+1≥0时,S
最小.
[8)若等差数列S(p)=q,S(q)=p,则S(p+q)=-(p+q)
6特殊性质
在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍,
即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中
例:
数列:1,3,5,7,9,11中
a(1)+a(6)=12
;
a(2)+a(5)=12
;
a(3)+a(4)=12
;
即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。
数列:1,3,5,7,9中
a(1)+a(5)=10
;
a(2)+a(4)=10
;
a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5
;
即,若项数为奇数,和等于中间项的2倍,另见,等差中项.