您的位置首页百科问答

《有理数的乘法》教学设计

《有理数的乘法》教学设计

作为一名教职工,时常需要准备好教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。教学设计应该怎么写才好呢?以下是小编精心整理的《有理数的乘法》教学设计,希望能够帮助到大家。

一、教学目标

1、知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

二、教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

三、教学过程

1、创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的`问题

2、小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

①2×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向运动米

2×3=

②-2×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向运动米

-2×3=

③2×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向运动米

2×(-3)=

④(-2)×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向运动米

(-2)×(-3)=

(2)学生归纳法则

①符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)=()同号得

(-)×(+)=()异号得

(+)×(-)=()异号得

(-)×(-)=()同号得

②积的绝对值等于。

③任何数与零相乘,积仍为。

(3)师生共同用文字叙述有理数乘法法则。

3、运用法则计算,巩固法则。

(1)教师按课本P75例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为。

(3)学生做练习,教师评析。

(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

抖音看短剧