距离公式:d=|C1-C2|/√(A^2+B^2)
公式由来:
设两条直线方程为Ax+By+C1=0、Ax+By+C2=0。两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Ab+Bb=-C1。
由点到直线距离公式,P到直线Ax+By+C2=0距离为d=|Aa+Bb+C2|/√(A^2+B^2)=|-C1+C2|/√(A^2+B^2)=|C1-C2|/√(A^2+B^2)
扩展资料:
点到直线距离公式介绍:
一、总公式:
设直线 L 的方程为Ax+By+C=0,点 P 的坐标为(Xo,Yo),则点 P 到直线 L 的距离为:
考虑点(x0,y0,z0)与空间直线x-x1/l=y-y1/m=z-z1/n,有s=|(x1-x0,y1-y0,z1-z0)×(l,m,n)|/√(l²+m²+n²)
d=√((x1-x0)²+(y1-y0)²+(z1-z0)²-s²)
二、引申公式:
公式①:设直线l1的方程为
;
直线l2的方程为
则 2条平行线之间的间距:
公式②:设直线l1的方程为
;直线l2的方程为
则 2条直线的夹角
,