某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,但多种的桃树不能超过100棵.如果要使产量增加15.2%,那么应多种多少棵桃树?
解题思路:每多种一棵桃树,每棵桃树的产量就会减少2个,所以多种x棵树每棵桃树的产量就会减少2x个(即是平均产1000-2x个),桃树的总共有100+x棵,所以总产量是(100+x)(1000-2x)个.要使产量增加15.2%,达到100×1000×(1+15.2%)个.设多种x棵树,则(100+x)(1000-2x)=100×1000×(1+15.2%)(0<x<100),
整理,得:x2-400x+7600=0,(x-20)(x-380)=0,
解得x1=20,x2=380.
∵果园有100棵桃树,380>100,
∴x2=380不合题意,故舍去.
答:应多种20棵桃树.
点评:
本题考点: 一元二次方程的应用.
考点点评: 本题考查一元二次方程的应用,关键找出桃树的增加量与桃子总产量的关系.
分析:每多种一棵桃树,每棵桃树的产量就会减少2个,所以多种x棵树每棵桃树的产量就会减少2x个(即是平均产1000-2x个),桃树的总共有100+x棵,所以总产量是(100+x)(1000-2x)个.要使产量增加15.2%,达到100×1000×(1+15.2%)个.设多种x棵树,则(100+x)(1000-2x)=100×1000×(1+15.2%)(0<x<100),
整理,得:x2-4...
设棵树为X
那么
(100*1000)*(1+15.2%)=(100+X)*(1000-2x)
解得:X=380或X=20
的啊
(100+X)*(1000-2X)-100*1000=100*1000*15.2%
解得X1=20;X2=380(舍)